Programme Outcomes, Programme Specific Outcomes and Course Outcomes of MSc and PhD programmes in Mathematics

Department of Mathematics Ramakrishna Mission Vivekananda Educational and Research Institute Belur Math, Howrah, INDIA

Programme Name: MSc Mathematics

Programme Outcomes

- Inculcate critical thinking to carry out scientific investigation objectively without being biased with preconceived notions.
- Equip the student with skills to analyze problems, formulate an hypothesis, evaluate and validate results, and draw reasonable conclusions thereof.
- Prepare students for pursuing research or careers in industry in mathematical sciences and allied fields
- Imbibe effective scientific and/or technical communication in both oral and writing.
- Continue to acquire relevant knowledge and skills appropriate to professional activities and demonstrate highest standards of ethical issues in mathematical sciences.
- Create awareness to become an enlightened citizen with commitment to deliver one's responsibilities within the scope of bestowed rights and privileges.

Programme Specific Outcomes

- Understanding of the fundamental axioms in mathematics and capability of developing ideas based on them.
- Inculcate mathematical reasoning.
- Prepare and motivate students for research studies in mathematics and related fields.
- Provide knowledge of a wide range of mathematical techniques and application of mathematical methods/tools in other scientific and engineering domains.
- Provide advanced knowledge on topics in pure mathematics, empowering the students to pursue higher degrees at reputed academic institutions.
- Strong foundation on algebraic topology and representation theory which have strong links and application in theoretical physics, in particular string theory.
- Good understanding of number theory which can be used in modern online cryptographic technologies.
- Nurture problem solving skills, thinking, creativity through assignments, project work.
- Assist students in preparing (personal guidance, books) for competitive exams e.g. NET, GATE, etc.

Programme Name: PhD Mathematics

Programme Outcomes

Students have/capable of

- Undergone relevant (taught) courses required for undertaking specialized research.
- Identifying unsolved yet relevant problem in a specific field.
- Articulating ideas and strategies for addressing a research problem.
- Undertaken original research on a particular topic.
- Effectively communicating research, through journal publications and conference presentations, to the mathematics community.
- Disseminating research to a broader audience.

Program Specific Outcomes

- Generate publications in reputed mathematical journals.
- Provide scope for interaction with international researchers and developing collaborations.
- Demonstrate the highest standard of ethics in research.
- Provide opportunities to research students for communication (and discussion) of advanced mathematical topics to undergraduate and graduate students.
- Produce next generation researchers in mathematics.

Course Outcomes

Semester-I		
Course	Course	Course Outcomes
Code	Name	
Code M201	Name Algebra 1	 Knowledge gained: Concept of group action and theorems about group actions. Structure of permutation groups. Polynomial rings, EDs, PIDs, & UFDs, and relations among them. Universality of Polynomial rings Skills gained: Solving problems using the powerful concept of group action. Facility in understanding the structure of a problem where the problem involves a permutation group - e.g. nature of the roots of a polynomial equation. Ability to understand a large class of commutative rings by regarding them as quotients of polynomial rings by suitable ideals. Competency developed: Applying the concept of a group action to real life problems such as Counting Facility in working with situations involving commutative rings, in particular monogenic algebras of matrices. Implies facility in working with matrices, a concept that finds a large number of applications in real life including the graphs and networks.
M202	Topology	 Facility in solving real life problems by thinking logically and outside of box. Knowledge gained: Topological spaces Connectedness, compactness, separation axioms Continuity Metric spaces review Fundamental groups Covering spaces
		 Computations Skills gained: Generalization of concepts like continuity Generalizations of theorems Distinguishing spaces up to homeomorphisms Competency gained: Understanding of topological spaces and having a grasp on basic results
M203	Complex Analysis	 Knowledge gained: Metric spaces (in particular, the complex plane). Analytic functions, Cauchy-Riemann differential equations, harmonic functions.

		Power series, zeros, singularities.
		 Cauchy's theorem. Cauchy's integral formula, and applications.
		 Cauchy's residue theorem, and applications.
		Mobius transformations
		Riemann manning theorem
		Skills gained:
		• Differentiation of functions on C, deciding if a function on C is analytic.
		• Development of functions into power series, classifying singularities.
		 Integration of functions on C, applications to counting zeros and poles.
		 Evaluation of indefinite real integrals using complex analysis.
		Constructing Mobius transformations mapping given circles to given
		circles.
		Competency developed:
		 Understanding of topological and geometric properties of the complex
		plane.
		 Differentiation and integration of functions on C, with applications to problems from real analysis
		Viewing analytic functions as conformal mannings
M204	Linear	Knowledge gained:
	Algebra 1	Matrix theory, determinants and their application to systems of linear
		equations.
		Eigenvalues, diagonalization of matrices and reduction of systems of
		linear equations into simpler systems of easily tractable nature.
		 Vector theory: subspace, basis, linear independence, inner product
		spaces etc.
		• Applications of matrix algebra.
		Skills gained:
		Matrix manipulations.
		 Handing of systems of linear equations.
		 Use mathematical software to solve problems on linear systems.
		Ability to go abstract from concrete: from concrete notion of solution
		spaces to vector spaces.
		Linear modelling problems
		Competency developed:
		 Solving Systems of linear equations.
		 Qualitative analysis of systems of linear equations.
		• Vector Spaces, linear independence and foundations of abstract algebraic
		thinking.
M205a	Real	Knowledge gained:
	Analysis I	Basic definition of metric space, norm linear space and inner product
		space.
		 Series and sequence of continuous functions. Equipantinuous familias, Arapla Assoli Theorem and Stone Waierstress.
		 Equicontinuous families, Arzeia-Ascoli Theorem and Stone-weierstrass Theorem.
		 Function of several variables and differentiation in Rn.
		Inverse and Implicit function Theorem.
		Submanifolds of Rn and Rank Theorem.

		Skills gained:
		 Viewing C[0,1], i.e., the space of continuous functions on [0,1] as a metric space.
		 The notion of convergence in c[0,1] and related theorems.
		 Differentiability of functions in several variables and their relation to partial derivatives.
		Realising the differentials in terms of geometric properties.
		Competency developed:
		Ability to handle convergence of series and sequence of functions.
		Ability to differentiate functions in Rn.
		 Apply Implicit and inverse function theorem, moving towards calculus on manifolds.
		Semester—II
M205b	Real	Knowledge gained:
	Analysis II	 Ordinary differential equations and linear system of o.d.e's.
		Cauchy-Peano existence and uniqueness Theorem.
		Picard-Lindelof Theorem, Continuation of solutions.
		 Examples of second-order partial differential equations, i.e., Heat, Wave and Laplace equation
		 Properties of Harmonic and subharmonic functions.
		 Solution to the Dirichlet problem.
		Skills gained.
		Solve ordinary differential equations.
		 Solve linear system of homogeneous and non-homogeneous o.d.e.s.
		 Idea about Partial differential equation and link to partial derivatives.
		 Idea about the solution of the Dirichlet problem for certain subdomains of Rn.
		Competency developed:
		Ability to handle ordinary differential equations and solve them under appropriate assumptions.
		 Ability to solve a linear system of o.d.e.'s
		Apply important properties of harmonic and subharmonic functions.
		Apply the solvability of the Dirichlet problem in appropriate conditions.
M206	Algebra 2 - Fields and	Knowledge gained:
	Galois	 Solving polynomial equations using formulas for roots How to tost if a polynomial is irreducible finite field (Colois Fields)
	Theory	 How to test if a polynomial is ineducible rimte ried (Galois rieds) Understanding which equations can be solved using radials using the concel
		• Onderstanding which equations can be solved using faulais using the conce
		Skills gained:
		 Ability to understand/obtain the roots of a polynomial equation if the same has (or can be reduced to) degree less than five.
		Facility in working with finite fields
		 Applying the concept of a field extension to various mathematical problems including geometric constructions and perfect division of a circle into n parts

		Competency developed:
		 Facility in working with mathematical problems that involve polynomial
		equations.
		 Facility in handling problems involving polynomial equations Applying methods to the real life problems including
		 Applying mathematical methods to the real-life problems including cryptography
		 Highly developed reasoning ability
M207-	Theory of	Knowledge gained:
2	Modules	 Module theory as linear algebra over general rings.
		 Special classes of modules: free modules, projective modules, flat modules etc.
		 Theory of modules over PID and its application to Jordan and Rational canonical forms.
		Basic concepts in homology: Hom, Tensor etc.
		Skills gained:
		 Ability to handle complicated matrices and systems of equations via decomposing into nice forms.
		 Ability to deal with module theory which is indispensable in wide ranges of mathematical disciplines
		such as algebra, topology, number theory, operator theory etc.
		Ability to handle modern algebraic notions like quotients, generators and
		relations, universal mapping property etc.
		 Ability to apply intuitions gained from linear algebra to other seemingly unrelated areas of mathematics.
		Competency developed:
		Deeper insight into and further comfort with linear algebra
		 Ability to think about classical problems in algebra that involves systems of equations in terms of language of modern algebra
		 Basic preparation various research areas in pure mathematics like
		algebraic geometry, Algebraic Number Theory, Topology etc.
		An abstract perspective to many real life problems that can be modelled
		using linear algebra.
M208	Measure	Knowledge gained:
	Theory	• Definition and properties of the exterior measure on R ^A d.
		 Measurable sets and Lebesgue measure, construction of non-measurable sets.
		Measurable functions.
		 Lebesgue integration, convergence theorems for Lebesgue integrals and Fubini's theorem.
		 L^p spaces and Fourier inversion formula.
		 Connection between differentiation and integration in the context of Lebesgue theory.
		Skills gained:
		Computation of Lebesgue measures.
		Establishing measurability or non-measurability of sets and functions.
		• Approximating measurable functions by simple and step functions.
		 Computation of Lebesgue integrals, applications to volume calculations and Fourier analysis
		 Deciding under which conditions the fundamental theorem of calculus
		is applicable in the context of Lebesgue integration.

		 Competency developed: Extension of the concepts of measures and integration. Understanding that Lebesgue integration can solve certain problems for which Riemann integration does not provide adequate answers (in particular, in Fourier analysis). Viewing differentiation and integration as inverse operations in the more general context of Lebesgue theory, understanding the limitations of this view
M209	Elementar	Knowledge gained:
	y Number	 Definitions of divisibility and related algorithms
	Theory	Basic congruence results
		Quadratic reciprocity
		Distribution of primes
		Basic additive results
		 Diophantine approximation and transcendental numbers
		Skills gained:
		Solutions of diophantine equations
		Arithmetical functions
		Distribution of primes
		Liseful tools in cryptography and related applied subjects
	·	Semester—III
M211	Functional	Knowledge gained:
	Analysis	 Concept of normed linear spaces and inner product spaces.
		 Concept of bounded linear operators between these spaces.
		Concept of the dual space of a normed linear space.
		Concept of compact, self-adjoint and normal operators.
		Concept of the spectrum of a bounded linear operator.
		Skills gained:
		 Using topology to work with infinite dimensional vector spaces.
		 Using careful analysis to show that certain spaces of functions are
		complete.
		Comparing the differences between finite and infinite dimensional spaces.
		Comparing the differences between Banach and Hilbert spaces.
		 Analysing the structure of the spectrum of certain operators.
		Competency developed:
		 Working with a complete orthogonal set a.k.a. Schauder basis in a
		Hilbert space.
		 Investigating the best approximation of a given vector by vectors in a given subspace
		 Computing the dual spaces of certain Banach spaces.
		 Working with weak and weak* topologies on normed linear spaces.
M212	Algebraic	Knowledge gained:
	Algeorate	Knowledge gamed.
	Topology	Concept of homotopy of maps and topological spaces

		 Concept of homology and cohomology groups of spaces
		 Exposure to the language of categories and functors
		Skills gained:
		Ability to compute homology groups using long exact sequences
		Ability to exercise geometric intuition and visualisation
		Ability to translate geometric intuition into rigorous proofs
		 Working with geometric objects which exist only in higher dimensions
		Competency developed:
		Ability to differentiate between some more topological spaces
		 Working with homological methods in algebra
		 Using algebraic methods to solve topological problems
		 Using topological methods to solve algebraic problems
M213	Discrete	Knowledge gained:
	Mathemat	Basic set theory, cardinal numbers, different concepts of infinity.
	ics	• Basic combinatorics, induction, inclusion exclusion, pigeon hole principle.
		More advance topics in combinatorics: recurrence relations, generating
		functions, Polya's theorem, graphs, trees, topics in matching such as
		Marriage theorem.
		Ramsey theory, planar graph. Dartially, and and act. Dilyerth's theorem and autremal set theory.
		 Partially ordered set: Dilworth s theorem and extremal set theory. Application to real life problems such as network theory, data structure
		• Application to real life problems such as network theory, data structure, optimization etc.
		Skills gained:
		 Efficiency in handling with discrete structures.
		 Efficiency in Set theory and handling formal of notions of size.
		 Efficiency in notions of matching, ordering, planarity.
		Efficiency in solving concrete combinatorial problems whose presence
		is ubiquitous in science and engineering.
		Competency developed:
		 Ability to deal with notions of mapping and via that notion ability to
		tackle various notions of infinity like countable, uncountable etc.
		 Ability to use graphs as unifying theme for various combinatorial
		problems.
		 Ability to apply combinatorial intuitions in network theory, data structure and various other fields of science
		FLECTIVES (SEMESTER_III & IV)
CS221	Design and	Refer to MSc in Computer Science curriculum CS241
	Analysis of	
	Algorithms	
CS244	Introducti	Refer to MSc in Computer Science curriculum CS222
	on to	
	Optimizati	
	Technique	
	s	
AM200	Nonlinear	Knowledge gained:
	Dynamics	 Capable of determining fixed points and their stability.

	and Asymptoti c Analysis	 Analyze the type of bifurcation. Ability to draw phase portraits. Learn the art of asymptotic approximation to challenging mathematical
		problems.
		Skills gained:
		Knowledge of nonlinear differential equations and their analysis.
		 Simplify and solve mathematical problems involving small parameters.
		Competency gained:
		Ability to solve complex nonlinear problems.
		Asymptotic solutions to complex differential equations.
AM201	Numerical	Knowledge gained:
	Algorithms	 Wide variety of numerical techniques to solve mathematical problems arising in diverse scientific contexts. Implementation of stable algorithms for finding roots of nonlinear equations, solving linear system of equations, and solution for ODEs, etc.
		• Influence of data representation on computers on numerical algorithms.
		Skill gained:
		 Implementing numerical algorithms through computer programs. Analysis of errors of numerical algorithms
		Competency gained:
		• Obtain approximate stable solution to mathematical problems making use of numerical algorithms.
CS312	Approxima tion and	Refer to MSc in Computer Science curriculum CS312
	Online	
(\$212	Algorithms	Pofer to MSc in Pig Data Analytics curriculum DA100
C3512	for Data	Refer to Misc in big Data Analytics curriculum DA100
	Science	
M308	Differentia	 Knowledge of Riemannian manifolds and submanifolds. Knowledge of operators on forms and integrations. Lie derivative. Stokes
	Geometry	theorem, Gauss-Bonnet formula and Index theorem.
		Tackle problems on General Relativity, control of non-linear systems,
M212	Algobraio	shape analysis.
11313	Geometry	 Learn topology on projective spaces. Learn local properties on plane curves
	,	 Solve complex problems on ordinary differential equations.
		Tackle problems on CAD/CAM, computer vision.
M322	Geometric	 Understanding of Knots and Links, surgery on links.
	Topology	Knowledge of Hyperbolic geometry groups.
Maaa		Solve complex problems in topological quantum field theory.
111523	and Lie	 Knowledge of Killing form, Lies and Engel's theorem, Universal enveloping algebra and Poincare-Birkhoff-Witt theorem, root space decomposition
	Algebras	 Understanding of Linear Lie group, Lie algebra, Lie transformation groups.
		Solving of complex differential equations.
M324	Advanced	Knowledge of Jacobi Fields, conjugate points, Isometric immersions,
	Differentia	Second fundamental form.

-	1	
		 Knowledge of Bonne-Myers and Synge-Weinstein Theorems, Rauch
		comparison theorem, Morse Index theorem, Preissman's Theorem, Sphere
		theorem.
		• Solve complex problems to diverse problems (in physics, engineering) with
		differential geometry.
M325	Complex	 Learn Cauchy's theorem in several complex variables, Definition and
	Manifolds	calculus on complex manifolds.
	and	• Learn Sheaves and cohomology, Divisors and Line bundles, Normalization
	Riemann	theorem.
	Surfaces	Applications in string theory.
M 327	Advanced	 Learn Homotopy groups, Serre spectral sequence.
	Algebraic	 Learn vector bundles, generalized cohomology theory.
	Topology	 Applications in physics, algebraic geometry.
M332	Programm	Refer to MSc in Big Data Analytics curriculum DA101.
	ing and	
	Data	
	Structures	
M334	Automata	Refer to MSc in Computer Science curriculum CS200.
	theory,	
	Languages	
	and	
	Computabi	
	lity	
M341	Classical	Refer to the syllabus of the Physics Department.
	Mechanics	
	1	
M342	Classical	Refer to the syllabus of the Physics Department.
	Mechanics	
	2	
M343	Quantum	Refer to the syllabus of the Physics Department.
	Mechanics	
M400	Project	Inculcate a taste for research in Mathematics.
		 Develop oral and written presentation skills.
M450	Research	• Use of online resources (e.g. MathSciNet) for literature survey.
	Methodol	Preparation of documents using latex software.
	ogy	-